IRWIN AND JOAN JACOBS CENTER FOR COMMUNICATION AND INFORMATION TECHNOLOGIES The Cramér-Rao Bound for Sparse Estimation

نویسندگان

  • Zvika Ben-Haim
  • Yonina C. Eldar
چکیده

The goal of this paper is to characterize the best achievable performance for the problem of estimating an unknown parameter having a sparse representation. Specifically, we consider the setting in which a sparsely representable deterministic parameter vector is to be estimated from measurements corrupted by Gaussian noise, and derive a lower bound on the mean-squared error (MSE) achievable in this setting. To this end, an appropriate definition of bias in the sparse setting is developed, and the constrained Cramér–Rao bound (CRB) is obtained. This bound is shown to equal the CRB of an estimator with knowledge of the support set, for almost all feasible parameter values. Consequently, in the unbiased case, our bound is identical to the MSE of the oracle estimator. Combined with the fact that the CRB is achieved at high signal-to-noise ratios by the maximum likelihood technique, our result provides a new interpretation for the common practice of using the oracle estimator as a gold standard against which practical approaches are compared. EDICS Topics: SSP-PARE, SSP-PERF.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010